Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Technol ; 56(18): 12926-12936, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2016513

ABSTRACT

This study presents total OH reactivity, ancillary trace species, HO2 reactivity, and complex isoprene-derived RO2 reactivity due to ambient aerosols measured during the air quality study (AQUAS)-Kyoto campaign in September, 2020. Observations were conducted during the coronavirus disease (COVID-19) pandemic (associated with reduced anthropogenic emissions). The spatial distribution of missing OH reactivity highlights that the origin of volatile organic compounds (VOCs) may be from natural-emission areas. For the first time, the real-time loss rates of HO2 and RO2 onto ambient aerosols were measured continuously and alternately. Ozone production sensitivity was investigated considering unknown trace species and heterogeneous loss effects of XO2 (≡HO2 + RO2) radicals. Missing OH reactivity enhanced the ozone production potential by a factor of 2.5 on average. Heterogeneous loss of radicals could markedly suppress ozone production under low NO/NOx conditions with slow gas-phase reactions of radicals and change the ozone regime from VOC- to NOx-sensitive conditions. This study quantifies the relationship of missing OH reactivity and aerosol uptake of radicals with ozone production in Kyoto, a low-emission suburban area. The result has implications for future NOx-reduction policies. Further studies may benefit from the combination of chemical transport models and inverse modeling over a wide spatiotemporal range.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Environmental Monitoring , Humans , Ozone/chemistry , Respiratory Aerosols and Droplets
SELECTION OF CITATIONS
SEARCH DETAIL